Platforms4CPS, a coordination and support action in the area of Smart Cyber-Physical Systems.

Some highlights and snapshots on activities

Follow Platforms4CPS:

Charles Robinson
22/06/2017

IEEE – 13th System of Systems Engineering Conference
Platforms4CPS - Vision

Creating the CPS Vision, Strategy, Technology Building Blocks and Supporting Ecosystem for Future CPS Platforms by

- Analysing the ecosystem and market perspective and strategically updating and validating existing CPS roadmaps

- Promote platform building and create a repository of CPS technology building blocks

- Build up an ecosystem by cooperating on the foundations of CPS engineering, and supporting consensus-building
Platforms4CPS Consortium

- THHINK Wireless Technologies
- Thales
- Systematic
- Royal Institute of Technology (KTH)
- Steinbeis 2i
- Festo
- Fortiss

Platforms4CPS - Creating the CPS Vision, Strategy, Technology Building Blocks
Platforms4CPS - Creating the CPS Vision, Strategy, Technology Building Blocks
Project website – Interesting Studies and Slides of Workshops

Deliverable 1.1_Market segmentation for CPS technology
Deliverable 1.2_European ecosystem and market opportunities assessment
Deliverable 3.1_Analysis CPS platforms
Deliverable 3.3_Platform Report
Deliverable 3.4_CPS Platform Building Blocks
Deliverable 4.1_Foresight Community and Ecosystem Report
Deliverable 4.3_Collaboration on the foundations of CPS Engineering
CPS & Industrial IoT Landscape

Highlights relating market analysis & segmentation, competition, European ecosystem
Market Analysis (Survey & Segmentation)

Market Survey – Client perspective categorising technologies

Market Segmentation – Technology perspective categorising clients
Market Survey

- In domains of transport, health, manufacturing and energy.
- Classification of CPS in existing market studies found often to be very generalised including partial CPS (such as only monitoring).

- Manufacturing represents about 80% of European exports - Interoperability and common standards key roadblock for I4.0 implementation. Over 100 standardisation organisations worldwide - risk of local standards is high, resulting in risk of technological lock-in.

- European medical technology estimated to be 31% of the world market. Second largest after the US (40%). Highly innovative industry (R&D investments up to 12% of revenues) with 80% SMEs.
 - Highly fragmented.
 - A global viewpoint can be misleading because market highly dependent on country
 - Very high long-term care expenditure disparities across EU countries (differences seem as much as 1 to 1000).
Market Survey

- **European Transportation**
 - **Automotive** 4% of the EU’s GDP and largest private investor in R&D.
 - **Rail** accounts for nearly half of the world market and a total production value of €40 billion (2010). Research activities highly fragmented – EC and industry initiative to bring them under one roof (Shift2Rail)
 - **Aerospace** turnover of €140 billion in 2013. **50 million passengers a year - expected to double in next 20 years.** Challenges include safely accommodating this increased use of aerospace whilst protecting the environment.
 - **Shipping** is 90% of world trade – 3 of the top 5 ports are European and ~40% of merchant fleet controlled by European companies.

- **Energy** - For six years in a row the renewables sector has outpaced the fossil fuels sector for investment in power capacity additions. Wind and solar PV account for about 77% of new installations, with hydropower representing most of the remainder. **China accounts for about half of this.**

- Very extensive review of the market figures for CPS domain on our website.
European ecosystem and market opportunities assessment

- See technical brief (15 pages) or full comprehensive study (97 pages).
CPS ranking from various stakeholders & linked with roadmapping activities

<table>
<thead>
<tr>
<th>LI, SME & Acad</th>
<th>Cyber/Security, Privacy, Confidentiality, Trust Integration, Interoperability, Standards AI, Cognitive Systems, Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI</td>
<td>CPS Engineering (Requirements, Design, Testing)</td>
</tr>
<tr>
<td>LI & Acad</td>
<td>Safety, Reliability, Resilience, Fault Tolerance Modelling and Simulation (Virtualisation)</td>
</tr>
<tr>
<td>LI & SME</td>
<td>(Big) Data, Real Time Analysis, Visualisation</td>
</tr>
<tr>
<td>SME & Acad</td>
<td>Platforms, Reference Architectures, Tools Humans in the Loop Situational Awareness, Diagnostics, Prognostics, Decision Making and Support</td>
</tr>
<tr>
<td>SME</td>
<td>Human Machine Interface (HMI)</td>
</tr>
</tbody>
</table>
Hype-cycle for operational technology (Gartner 2016)

CPS is both existing operational infrastructure (e.g. air traffic control) and new technologies. On the hype-cycle it is new CPS technology shown to take long to be adopted. Existing CPS need better processes to adopt Technology!
CPS Market Segmentation

- Launch of the first public study for CPS.
- **Important factor for tailoring technology** to meet needs for the most relevant customers. Enables analysis of customer profitability and where to compete. Can show hurdles to be solved and reveal new customers.

- Help build the knowledge base via https://plattform.proj.kth.se
CPS Roadmapping and Recommendations

Highlights relating mapping roadmaps strategic updates and validation
Methodology

- Following the objective to strategically update, validate and harmonise existing CPS roadmaps, activities focussed on:
 - **Mapping** the national, European and international CPS/IoT roadmaps
 - **Identifying and discussing** CPS concepts, research challenges, enabling technologies and barriers.
 - **Holding a series of ‘Roadmapping Consensus Workshops’,** with community representatives.
 - **Evaluating priorities & defining strategies** to address the major enablers and barriers for successful CPS deployment.
 - **Creating a ‘living’ roadmap document,** the ‘Community Roadmap’ on the Platforms4CPS website
 - **Encompassing the views** and initiating discussion **amongst key stakeholders** as well as the development of the ecosystem
Innovation Accelerators

- **Collaboration** across initiatives, international collaboration
- Access of **SMEs, start-ups and scale-ups** to the eco-system
- **Openness**, open data, open innovation, open platforms
- Demonstration, **pilot lines** and living labs
- **Business models**, servitisation, data driven economy, crowd funding, blockchain
- CPS standardization, **regulation**, liability, **privacy** and **ethics**
- T-shape, cross-disciplinary **education**, life-long learning, (re/up-)skilling, avoid digital divide
- Raise **awareness**, promote societal dialogue, enhance user acceptance & trust
- **Discuss risks** like **IT addicts**, vulnerability, digitization changes our behaviour and even **brains**
- Create a **positive vision** and respective plan for CPS developments and implementation
Roadmapping CPS technology focus themes (snap shot)

The “CPS platforms & interoperability” group revealed the following priorities and recommendations:

- From a fragmented landscape towards composable, open, cheap plug-and-play components
- Federation/orchestration of increasingly decentralized, more dynamic platforms
- From (cloud) centralized AI to AI at the edge, neuromorphic processors, quantum processors
- Towards selling experiences on trusted CPS market-places within the business eco-system

The “CPS engineering” group raised the following priorities and recommendations:

- Managing composability with systems of agile/intelligent CPS devices (design time > runtime)
- Enabling technologies, methods, design tools from multiple disciplines including AI
- Engineering methods and design tools for highly-dynamic systems of CPS in uncertain contexts
Roadmapping CPS technology focus themes (snap shot)

- Within the group work “Autonomous CPS” the following priorities and recommendations were raised:
 - From self-healing, self-learning to self-reconfiguration and full-autonomous decision making
 - From machine learning, pattern-recognition, and data-fusion towards algorithms to extract filtered information and miniaturized energy efficient data centres
 - Increasing integration of co-bots and user interface adaptability towards AI enabled assistants
 - Ensure trust and take ethics into account

- The group on “CPS safety, security, trustworthiness and compliance” pointed out priorities regarding:
 - Frameworks for legislation, certification, trustworthiness and cybersecurity
 - Safety, security, privacy and transparency by design and co-engineered
 - Really secure solution for biometrics and forensic
 - Push research at the intersection of AI and cybersecurity
CPS Platforms and Pre-normative Activities

Highlights relating analysis of existing technology platforms, PlatformArenas, PlatForum, Building Blocks Repository
Survey of Platforms (In our context – A platform aids integration or distribution of technology)

- **83 platforms** analysed **15** different platform types could be **categorised** based on specific challenges during the development or “life-cycle” stage of a CPS.

- Platforms from the **US** are **mainly technical and more cross-cutting and commercially-/market oriented**.

- **More European platforms** of an **organisational type**, but useful as seedbeds for technical and operational CPS initiatives. **Technical platforms** seen to have more problem- or domain-specific focus

- **European platforms more open** than US platforms

- **Connectivity a major factor so IoT plays significant role here.**

General note: Google searches show ~ x100 more pages related to IoT than CPS

- One reason is CPS is between business rather consumer.
- CPS industry should increase public visibility

Interesting point: You can bring IoT to CPS but is the reverse equally true?
More generally, for the Medical Domain there seems to be no platforms of full CPS at Operational/Technical levels.
Interacting on the PlatForum

- Contribute to CPS eco-system building: Platforum gathers academia & industry in a virtual community

- PlatForum is an on-line web-site for stimulating debate
 - wiki, blogs, questionnaires, and discussion forums
 - specific entries for Platforms4CPS key tasks, e.g. Foundations, roadmapping, repository of building blocks
Initiating CPS Building Blocks and a CPS Compass for the Community

A compass ideally enabling CEOs for instance to decide on best CPS training for staff.
Scenarios for Sketching the Scope

<table>
<thead>
<tr>
<th>Vertical description of scenarios</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level description of scenarios</td>
<td>Horizontal interconnectedness</td>
<td>Vertical interconnectedness</td>
<td>Increased level of servitization</td>
<td>Specific functionality, limited interconnectedness, lowly digitized environment</td>
</tr>
<tr>
<td>Smart Manufacturing</td>
<td>Technology supports the interconnectedness of ecosystem entities</td>
<td>Technology supports in optimizing an organization/entity</td>
<td>Technology enables to increase the level of servitization</td>
<td>Functional scope of solutions and interconnectedness is limited (Cyber Physical Micro Functions/Services/Sytems)</td>
</tr>
<tr>
<td>Smart Transportation</td>
<td>Interconnectedness describes the availability of information in a market to perform a physical action</td>
<td>E.g. load management for power plant, equipment in hospitals increasingly interconnects to improve efficacy,</td>
<td>E.g. energy markets, production services, logistic services,….</td>
<td>limitation due to specific need for application</td>
</tr>
<tr>
<td>Smart Health</td>
<td>e.g. release an order, increase stocks, optimize energy distribution, devices provide information of patients to multiple parties,…</td>
<td></td>
<td></td>
<td>E.g. autonomous maintenance function, optimized failsafe embedded system for aeronautics,…</td>
</tr>
<tr>
<td>Smart Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collaboration building and creation of foresight community

Highlights relating to building up the ecosystem, CPS Foundations, collaboration between projects & European Programmes. Consensus & dialogue on societal and legal issues.
Building up the Ecosystem

CPS Ecosystem

- CPS Community
 - CPS Foresight Community
 - External Advisory Board
 - registered specialists
 - CPS project cluster led by Platforms4CPS
- followers
- CPS projects
- associations & initiatives
- other SMEs, end users, etc.

Platforms4CPS - Creating the CPS Vision, Strategy, Technology Building Blocks
Collaboration Building and Consensus

- Workshops to engage the community on vision/roadmapping/foundations
 - CPS Cluster kick-off (+ monthly phone meetings)
 - CPS & IIoT Landscape Workshop
 - Foundations of CPS
 - Four ‘Roadmapping Workshops’
 - Four Platform Arenas took place inviting SMEs with respect to discussing Platform access.
 - Collaboration enhancement meeting with European Programmes and Projects.

- **Save the date** *(Wednesday 12th September)*
 - Final Consultation Event – CPS Innovations for the Future (Paris Region)
Consensus-building, awareness and dialogue on societal and legal issues.

- **Foundations activities** including
 - 1. Humans as part of CPS
 - 2. CPS and systems engineering – facets of complexity
 - 3. Autonomy, AI and self-awareness
 - 4. Composability for CPS

- **Societal & Legal Issues**
 - **Approach**: Desk research - 1st Questionnaire
 - Informal discussions - 2nd Questionnaire –
 - Workshop.

- **Connectivity** - privacy, confidentiality and cybersecurity for CPS/IoT
- **Legal Issues** considering risk and liability due to safety concerns of domains
- **Ethical issues of AI** considering transparency and the need ethical training
- **Social impact of Automation/Robotics** considering the threat to jobs as well as proposed approaches to address this such as a “robot tax” and Universal Basic Income
Emergent Activity: Distinguishing CPS

Transverse project activity
So which part is CPS, SoS or IoT?
Word Clouds – This is the impression CPS makes on many people

Providing this to the Public or Policy Makers gives little insight on the impacts of funding and competition.
Distinguishing CPS – Purpose of Activity

- CPS encompasses a wide range of technologies, some which overlap in other technology classes such as SoS, AI, IoT, Big Data.
 - Most CPS definitions are based on what people see being used in such systems, rather than what functions are indispensable.
 - As a result many people are ambiguous about what the differentiating factors are between the classes.

- If the public is to understand the differences and the significance of technology classes, the heart (core functions) needs to be clear.

- Clarity helps improve an understanding on how different levels of research funding impacts technologies in the CPS domain.

- Improved understanding for achieving CPS momentum in research projects. Reduced misunderstandings of new technology market implementation.

- Having form can mean barriers to some innovation, but equivalently without form effective innovation is limited.
CPS and other technology classes

As a baseline, CPS is the result of increasing complexity of Embedded Systems + their interactions, having the purpose to make changes in the real world.

CPS -> Heart: **Affecting physical world** and highest level of **interactive coordination**.
-> (Sensors + Processing + Effectors) + (Inter-system coordination)

Other Classes and relationship with CPS

IoT -> Heart: Global connectivity -> Common device protocols and HMI
(Differences example: Embedded Systems + coordination not a necessity)

SoS -> Heart: Interactive systems
(Differences example: Embedded Systems not a necessity)

AI -> Heart: Machine reasoning -> Data and information processing
(Differences example: Embedded Systems + coordination not a necessity)

A CPS can also do without main IoT, AI, SoS technologies, but can use them for CPS core functions to help manage complexity.
CPS Key Functions (supported by software & hardware)

CPS Goal: Cyberspace physically acting upon the Real World

Note the Coord. & Collab. function is provided via the other functions – but enables higher complexity.
Advancing the Design of CPS: Managing complexity!

Higher integration of the CPS Key Functions.

- **Integration of system level properties** such as Dependability (Safety, Security, Performance) and Human factors with traceability:
 - between product life-cycle phases (Requirements to Retirement).
 - within product life-cycle phases (e.g. safety-security for Architecting).

- **Integration** between complex systems.

- **Bridges** to effectively channel input from other technology classes (SoS, AI, IoT, Big Data...).

- Theory advancement needed, enabling the increasing need for integration across Technologies and across Disciplines.

Ultimately for design it is about **integration methods** that achieve systems of higher capability based on key CPS functions. However, in existing and emerging systems, there is need for **techniques to simplify** the resulting design complexity (for example foundations and building blocks).
Complexity Levels for higher CPS Engineering

Stage 1
- Linking System Properties (Co-engineering)

Stage 2
- Connected in Product Lifecycle

<table>
<thead>
<tr>
<th>Complexity Levels</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected in Product Lifecycle</td>
<td>3</td>
</tr>
<tr>
<td>Connected in Product Lifecycle</td>
<td>2</td>
</tr>
<tr>
<td>Connected in Product Lifecycle</td>
<td>1</td>
</tr>
</tbody>
</table>

Bridges with other Tech. classes

Metrics linked to degree of automated Design.

Physically acting on the Real World

- Sensing
- Processing
- Actuation
- Comms.
- Energy
- Coord. & Collab.
Intersection point and positioning of strengths (overlap a necessity)

Cyber-Physical Systems
Strengths in the higher levels & abstraction

Smart System Integration
Strengths on the lower levels & materials
Feedback on the Distinguishing CPS is welcome!

- Again – visit the appropriate section at https://platforum.proj.kth.se

Distinguishing CPS

It is very important to have clarity on what constitutes a Cyber-Physical System (CPS) and particularly what distinguishes it from other technology domains such as Artificial Intelligence or the Internet of Things.

With respect to this, we wish to ask for your feedback on the presentation here: https://www.platform4cps.eu/fileadmin/user_upload/8_Structuring_for_CPS_Clarity_-_CPS_Community_Enhancement.pdf

In particular feedback for the two slides outlined below. However feel free to add comment on (ideas for next steps welcome in the comments sections). Please us when voting or providing arguments.

For more discussions, see platform.prokth.so. This initiative provides feedback.

- In coming weeks a common CPS Glossary will also be going up for use in funding proposal writing.
 - This will be following a discussion with the CPS H2020 Cluster and then available for your feedback.
A few last observations
Wealth for Future Generations

- Short term wealth generation impacts long term wealth*.
 - Recent estimate that current technology should mean we are up to six times more productive - but for instance:
 - Minimum investment for short term profits.
 - Industry infrastructure insufficiently advanced for new technologies (need co-engineering).
 - Specialisation = efficiency -> but short term savings from generalisation.
 - Political instability from boom-bust cycle

- Need visionary policy making with support from technology. Also strategies that provide a level playing field so companies are not at a disadvantage from investing in long term actions.

- Evolution of value system with equal emphasis on short term value against long term value.

*See next slide.
Long Term Wealth also includes

- Levels of kindness and ability to contribute well in society.

- Quality of our infrastructure with open baselines on which to build.

- Quality of our natural environment
 - Of course pollution makes things more inhospitable but also:
 - Continued natural forest decline > 6% in last 20 years.
 - Lower levels that support animal kingdom at high risk
 - Continued sea acidification impacts shellfish, polyps, bone formation.
 - Insects declining. Regions with flying insects down 75% in last 30 years.

As the CPS domain physically interacts with the real world, it needs to take a lead in restoring the natural environment.

We each are accountable for our technologies
- not just carbon-neutral but nature-neutral.
Platforms4CPS in a nutshell

Platforms4CPS:
Creating the CPS Vision, Strategy, Technology Building Blocks and Supporting Ecosystem for Future CPS Platforms

Coordination and Support Action, co-financed by the EC - H2020 - ICT 1-2016: Smart Cyber-Physical Systems

7 Partners from 4 European countries

Coordinator: THALES Research & Technology, France, Dr. Charles Robinson
EC Project Officer: Jasna Resic

Project duration:
November 2016 - October 2018, 24 months

Total EC contribution: EUR 998,900,00

GA No.: 731599

Web: www.platforms4CPS.eu

<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>THALES SA</td>
<td>France</td>
</tr>
<tr>
<td>Steinbeis 2i GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>THHINK Wireless Technologies Limited</td>
<td>United Kindom</td>
</tr>
<tr>
<td>FESTO AG & Co KG</td>
<td>Germany</td>
</tr>
<tr>
<td>Kungliga Tekniska Hoegskolan</td>
<td>Sweden</td>
</tr>
<tr>
<td>FORTISS GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>Systematic Paris Region Association</td>
<td>France</td>
</tr>
</tbody>
</table>
Thanks and visit our website & PlatForum!

www.platforms4CPS.eu
www.platforum.proj.kth.se

or follow Platforms4CPS: