LABEX MS2T
“Management of Technological Systems of Systems”

Thierry Denœux

Université de Technologie de Compiègne
HEUDIASYC, UMR CNRS 7253
https://www.hds.utc.fr/~tdenoeux

SoSE 2018 workshop
Paris, June 22, 2018
Compiègne University of Technology

- Founded in 1972, has played a pioneering role for bridging industry and education
- 4,500 engineering students, 300 PhD students
- 9 research laboratories (4 joint with CNRS)
- 120 start-ups
Sorbonne University Association

- Six academic institutions
- Four national research organisations

- 7,700 academic staff (2,900 tenured professors)
- 57,800 students including 23,000 undergraduates
Investments for the Future: strategic initiatives launched in 2009 by the French Government, to boost French competitiveness by investing in:
- Research, higher education and vocational training
- Industry and SMEs
- Sustainable development
- Digital technology, biotechnology and nuclear energy, etc.

Two programmes launched so far: €22.6 bn in 2010 and €4 bn in 2014.

3 types of action:
1. Centres of excellence
2. Health and biotechnology
3. Technology transfer and valorisation
The Laboratories of Excellence program, launched in 2010, is coordinated by the French National research Agency (ANR). It aims to provide the best national laboratories with international visibility and significant resources in order to enable them to:

- Compete with their foreign counterparts
- Attract internationally renowned researchers and academics, and
- Create a high-level and integrated policy for research, education and valorization/partnership with industry
Consortium

Consortium of 3 joint research units at UTC, affiliated with CNRS and grouped in a research federation:

Heudiasyc: Information & Communication Technologies
BMBI: Biomechanics, Health Engineering
Roberval: Mechanics, Materials, Acoustics
<table>
<thead>
<tr>
<th>Systems</th>
<th>Systems of Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drone</td>
<td>Fleets of drones</td>
</tr>
<tr>
<td>Car with driving assistance</td>
<td>Autonomous cars + V2V/V2I communication + humans</td>
</tr>
<tr>
<td>Numerical models</td>
<td>Multi-physics (e.g., fluid-solid-thermal) and multi-scale models</td>
</tr>
<tr>
<td>Biohybrid tissues</td>
<td>Biohybrids constructs (e.g., bone-tendon-muscle) and artificial organs</td>
</tr>
<tr>
<td>Rehabilitation devices</td>
<td>Connected biomedical objects + patient + healthcare professionals + biomechanical models, etc.</td>
</tr>
</tbody>
</table>

Technological Systems of Systems (TSoS) = highly-organized meta-system whose components are, themselves, systems
Scientific Objectives

- Contribute to the development of a scientific approach to TSoS by drawing from a variety of
 - Disciplines (e.g., automatic control, machine learning, operational research, numerical analysis, etc.)
 - Application areas (transportation systems, mechanics, biomedical engineering)

- Apply the developed methods to challenging real-world problems in order to address major socioeconomic issues (mobility, energy, security, health, etc.)

- Conditions
 1. Development of integrative and interdisciplinary research
 2. Availability of realistic technological platforms allowing for an experimental/inductive approach
Research programme

Research Topic 1: (a) Management of information flows within communication networks, (b) Distributed information processing, (c) Autonomy of interacting systems

Research Topic 2: (a) Uncertainty management: Modeling uncertainties, (b) Uncertainty-robustness and integrity, (c) Uncertainties in numerical modeling

Research Topic 3: (a) Optimized design of TSoS: Multi-level and multi-physical optimization, (b) Scheduling and synchronizing mobile subsystems, (c) Operational safety of TSoSs

4 applications

Topic 1: (a) Management of information flows within communication networks, (b) Distributed information processing, (c) Autonomy of interacting systems

Topic 2: (a) Uncertainty management: Modeling uncertainties, (b) Uncertainty-robustness and integrity, (c) Uncertainties in numerical modeling

Topic 3: (a) Optimized design of TSoS: Multi-level and multi-physical optimization, (b) Scheduling and synchronizing mobile subsystems, (c) Operational safety of TSoSs
Table 1: 4-year goals

<table>
<thead>
<tr>
<th>Research topics</th>
<th>Scientific goals</th>
<th>Application goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field 1: Interaction and cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Managing information flows</td>
<td>- Security and heterogeneity of sub-systems</td>
<td>- Networks of sensors for health (SUPGEST, ICARE-U) and the environment</td>
</tr>
<tr>
<td></td>
<td>- Taking into account network dynamics in the distributed algorithm</td>
<td>- Inter-vehicle communication: up-scaling (2MI, ROBOTEX)</td>
</tr>
<tr>
<td></td>
<td>- Detecting attacks within networks (modelling and confinement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning from data streams: building the data representation with limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>memory and computational resources (selecting informative examples, interruptible algorithms).</td>
<td></td>
</tr>
<tr>
<td>1.2 Distributed processing</td>
<td>- Study decentralized collaborative control and observation methods</td>
<td>- Guiding a fleet of robots through an unknown and restrictive environment (ROBOTEX)</td>
</tr>
<tr>
<td></td>
<td>- Learning from uncertain and partial labels inferred by other modules</td>
<td>- Bringing multi-physical measurement systems into cooperation with their</td>
</tr>
<tr>
<td></td>
<td>- Aligning and fusing ontologies</td>
<td>processing (medical imaging, electrophysiological signals, motion sensors, etc.)</td>
</tr>
<tr>
<td>1.3 Autonomy of interacting</td>
<td>- Detecting context evolution in machine learning.</td>
<td>- Distributed information fusion in vehicle ad-hoc networks (ROBOTEX)</td>
</tr>
<tr>
<td>systems</td>
<td>- Studying methods for observing and controlling dynamic systems that have</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiple modes of operation, particularly due to the fact that their</td>
<td></td>
</tr>
<tr>
<td></td>
<td>structure is evolving.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Developing innovative actuators and sensors for integrated systems of systems</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: 10-year goals

<table>
<thead>
<tr>
<th>Research topics</th>
<th>Scientific goals</th>
<th>Application goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field 1: Interaction and cooperation</td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 Managing information flows | - Guaranteeing quality of service in heterogeneous networks
- Masking the dynamics of opportunistic networks | - Spontaneous networks for crisis management (floods, etc.)
- Developing social networks via technological SoSs (incorporating relationships between Humans, Technology, and Society) |
| 1.2 Distributed processing | - Automatic quantification of each module's goals and performances for carrying out the SoS's tasks
- Learning using implicit supervision (disagreement between the system's recommendations and the supervisor's decisions, operator's actions and reaction time, etc.)
- Evolution of ontologies | - Handling the reconfiguration problems of a fleet of robots (such as adding new members) and developing solutions for risk management (ROBOTEX)
- Autonomy through learning in TSoSs for Health (SUPGEST, ICARE-U) |
| 1.3 Autonomy of interacting systems | - Continuous autonomous learning: updating the representation of information subsequent to a change in the environment
- Assessing and optimizing guaranteed performance on large state spaces, over distant periods of time
- Innovative material in actuators and sensors development | - Controlling aerial drones, road vehicles (ROBOTEX) and barge convoys (NavCenter)
- Giving vehicles abilities that make them smarter in their interactions (cooperation with drivers and other vehicles) (ROBOTEX)
- Next generation of technology for characterizing and analysing complex systems |
Governance

Steering board

International Advisory Committee
- T. Aven
- L. Bilston
- M. Jamshidi
- D. Luzeaux
- R. Slowinski
- C. Stiller
- K. Worden

Steering Committee
- Director MS2T
 - A. Charara

- Assistance Steering and Coordination Officer
 - L. Herlin

International Coordinator
- Y. Grandvalet
 (F. Davoine)

Head of Training
- P. Bonnifait

Scientific Coordinator
- T. Denoeux

Head of Applications
- Affiliate's Club
 - J. De Miras

Research Topic 1
- Manager:
 Interaction and cooperation between systems
 - A. Bouabdallah

Research Topic 2
- Manager:
 Uncertainty management
 - S. Destercke

Research Topic 3
- Manager:
 Optimized design of technological SoSs
 - P. Villon
Experimental platforms funded as part of the ROBOTEX programme (€ 1m):

- Autonomous road intelligent vehicles (3 robotized electric cars)
- Fleet of mini UAVs (octo-rotors with embedded sensors)
- Experimental support: protected outdoor UAVs flight area, “mobile laboratory” (equipped van for outdoor experiments), test track
Other experimental platforms

- Spicarail: Railway supervision system
- SUPGEST: wireless sensor network architecture for functional rehabilitation
- Fully equipped cell biology platform to perform tissue reconstruction and characterization
- PILCAM 2: high-performance parallel computing platform
Funded and co-funded projects (examples)

<table>
<thead>
<tr>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Nov-2011</td>
<td>Nov-2014</td>
<td>Reliable design methodology of Systems of Systems in the presence of uncertainty: Application to transport systems</td>
</tr>
<tr>
<td>PhD</td>
<td>Dec-2011</td>
<td>Nov-2014</td>
<td>Biomechanical data uncertainty: modelling and propagation in musculoskeletal system pathology diagnosis models</td>
</tr>
<tr>
<td>Post-doc</td>
<td>April-2012</td>
<td>June-2012</td>
<td>Wavelength coding of digital information transmitted between systems in free space</td>
</tr>
<tr>
<td>PhD</td>
<td>Oct-2012</td>
<td>Sept-2015</td>
<td>Modeling of the flow of capsules through a complex capillary network</td>
</tr>
<tr>
<td>PhD</td>
<td>Sept-2012</td>
<td>Sept-2015</td>
<td>Reactive navigation of a fleet of drones in interaction</td>
</tr>
<tr>
<td>Post-doc</td>
<td>March-2013</td>
<td>Nov-2013</td>
<td>Sensitivity analysis and uncertainty modelling: application to electromyographical models</td>
</tr>
<tr>
<td>Post-doc</td>
<td>April-2013</td>
<td>April-2015</td>
<td>Wavelength coding of digital information transmitted between systems in free space</td>
</tr>
<tr>
<td>Post-doc</td>
<td>April-2013</td>
<td>April-2015</td>
<td>Distributed Algorithms and Theory of Belief Functions</td>
</tr>
<tr>
<td>Post-doc</td>
<td>July-2013</td>
<td>July-2014</td>
<td>Grammar-based driving scene understanding with uncertainties post-doc in the framework of a joint project with LIAMA – China</td>
</tr>
</tbody>
</table>
Funded and co-funded projects (examples)

<table>
<thead>
<tr>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Oct-2013</td>
<td>Oct-2016</td>
<td>Internet of Things security: towards a robust interaction of Systems of Systems</td>
</tr>
<tr>
<td>PhD</td>
<td>Oct-2013</td>
<td>Oct-2016</td>
<td>The project scheduling problems with storage resources, optimisation and robustness</td>
</tr>
<tr>
<td>PhD</td>
<td>Oct-2013</td>
<td>Oct-2016</td>
<td>Modelling of the Surface EMG/Force relationship by data analysis of a high-resolution sensor network</td>
</tr>
<tr>
<td>Post doc</td>
<td>Dec-2013</td>
<td>Oct-2014</td>
<td>Robust control-command strategies in a contract-based collaboration framework (co-funded by Labex MS2T/ ALSTOM)</td>
</tr>
<tr>
<td>PhD</td>
<td>Dec-2013</td>
<td>Dec-2016</td>
<td>New methods for multi-objective learning (co-funded by Labex MS2T/ Regional Council of Hauts-de-France)</td>
</tr>
<tr>
<td>PhD</td>
<td>Oct-2015</td>
<td>Sept-2018</td>
<td>Control of Systems of Systems: Case of several autonomous vehicles in interaction</td>
</tr>
<tr>
<td>Post doc</td>
<td>Sept-2015</td>
<td>Sept-2016</td>
<td>Control and communication of multi-robot system for visual navigation</td>
</tr>
<tr>
<td>PhD</td>
<td>Nov-2015</td>
<td>Sept-2016</td>
<td>Fault Tolerant Control of an Octorotor Unmanned Aerial Vehicle under Actuators Failures</td>
</tr>
<tr>
<td>PhD</td>
<td>April-2016</td>
<td>March-2019</td>
<td>Multi-Robots Exploration Strategies using Active Visual SLAM and Distributed Control Architectures</td>
</tr>
</tbody>
</table>
Inductive approach: starting from a set of concrete applications (using experimental platforms) to derive generic concepts and techniques

From focused research projects to multidisciplinary challenge teams centered on experimental platforms and involving several labs and/or research groups:

DAPAD: Distributed and augmented vehicle perception to support autonomous driving

DIVINA: DIstributed cooperative VIusal Navigation for multi-uAv systems

INTERFACE: Tissues and cell Interfaces in muscle-skeleton system: Application to the design of bioartificial SoS
DAPAD: Objectives

Distributed and augmented vehicle perception to support autonomous driving

Augment the range of perception systems to enhance situational awareness of autonomous vehicles in complex and highly dynamic scenes, by making use of perception data broadcasted by other road users and by the infrastructure through V2V and V2I communication.
Implementation of state-of-the-art algorithms for localization, perception, control, communication and human-machine interface on our experimental vehicle (a Renault Zoe electric car).
DAPAD: Ongoing research actions

- Distributed data fusion in the Dempster-Shafer framework
- Collaborative localization and perception (fusion of evidential occupancy grids)
- Cooperative maneuver control for autonomous vehicles
- Data sharing in dynamic networks for cooperative driving
- Etc.
DIVINA: Objectives

Distributed cooperative Visual Navigation for multi-uAv systems

Objective: Efficiently explore a totally or partially unknown geographic area using a multi-UAV system with vision sensors as the main perception modality and bio-inspired communications through distributed control.
DIVINA: Ongoing research actions

- **Distributed control:** multi-UAV formation, collision-free flocking, loop-closing revisiting strategies.

- **Visual Perception:** distributed and error-bounded Visual SLAM, heterogeneous camera network, relative pose estimation.

- **Bio-inspired Communications:** cooperative networking protocols and algorithms, robust and efficient inter-robots communications, evolutionary linguistic models (naming game)
In the last 15-20 years, the achievements in biotechnology have fostered significant progresses in the field of **tissue engineering** (bone, skin, muscle, cartilage, liver, etc.)

Challenge: target **global system development** in which different multi-layered tissues (muscle-tendon-bone) will be designed together → **bioinspired SoS.**
Reconstruct the **bone-tendon-muscle continuum** using **smart tissue engineering** approaches based on:

- **Deep knowledge** of the native tissues architecture and composition at different scales
- **Design of electrospun materials** mimicking the structure
- **Relevant cell types**
- **Culture of the biohybrid constructs** under dynamic conditions in bioreactors to exploit mechanical stimulation (as in a body) for enhanced tissue maturation
International outreach

- **Visiting Scholar** Programme (1-3 months): 25 scholarships granted
- **Visiting Chair** (A. Sekercioglu, Monash U.)
- Hosting and sponsoring of **international conferences** (e.g., SoSE 2018)
- Participation in **strategic groups**: Trans-Atlantic Research and Education Agenda on Systems of Systems (T-AREA-SOS), program committee CHIST-ERA (European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies) on Cyber-Physical Systems
- **International collaborations**
Two-year Master’s program

Objective: provide skills to analyse and design complex systems using a systemic **multidisciplinary approach**, over and above a strong, basic engineering qualification

Course modules correspond to the Labex research program, with hands-on training with the Labex experimental platforms
Master’s program on “Complex Systems Engineering”

- Partnership agreement with the University of Genoa: European Master in Engineering for Complex and Interacting Systems, supported by the Erasmus and the Vinci programs for student and faculty mobility.
- Since 2014, 190 M2 graduates, 61 M2 internships (5-6 months), 37 Labex scholarships
Partnership with Industry

- Co-funding: around €1m since 2012

SIVALab:
- Joint research laboratory between UTC, CNRS and Renault. Created in 2017
- Four-year research programme on perception and localization systems supplying reliable navigation data for communicating autonomous vehicles
“The overall opinion is definitely positive”
“Analyzing systems of systems is a real research challenge”
“The project overall produced an impressive list of publications and a significant number of them are in top level journals”
“The main added value of the Labex funding consists in establishing a community of scholars from UTC, CNRS and industries on the challenging topics of the project”
“Very good progress in formation and education”
“Tight relations with industries have been established”
“The institutions involved in the project have been able to attract interest from scholars and from industries on the challenges of the project”
“A very good governance and management of the project”
Integration of a 4th laboratory: CosTech (human and social sciences)

4th axis on Dynamics of SoSs: Emergence and agility

Preparation of a response to the next call of the “Ecole Universitaire de Recherche (EUR)” (multidisciplinary Graduate School) program.
Conclusions

Positive impact on the three laboratories and the university as a whole, in terms of:

- **Research:** interdisciplinary projects, structuring of platforms, etc.
- **Training:** dedicated Master program, graduate school, etc.
- **International reach:** visiting scholar program, seminar, international student exchange, etc.
- **Value enhancement:** increased partnership with industry, startup creations, etc.

The way ahead:

- Continue promoting interdisciplinary research, by extending the perimeter of the project to other labs (process/urban engineering, applied mathematics)
- Further integrating research and training (graduate school project)
- Enhancing partnership with industry through joint laboratories and industry-funded chairs
- Continue developing international relations through student exchange programs, joint Master’s programs, international laboratories, etc.